
What is POOMA?

POOMA (Parallel Object-Oriented Methods and
Applications) is an object-oriented framework for
applications in computational science requiring high-
performance parallel computers. It includes C++ classes
designed to represent common abstractions in these
applications—abstractions such as arrays, fields, geometries,
meshes, and particles.

The main goals of the POOMA framework include the following:

•Code portability across serial, distributed, and parallel
architectures with no change to source code

•Development of reusable, cross-problem-domain
components to enable rapid application development

•Code efficiency for kernels and components relevant to
scientific simulation

•Framework design and development that can be driven
by applications from a diverse set of scientific problem
domains

•Shorter time from problem inception to working simulations

The earlier version of POOMA, generally referred to as
POOMA r1, has enjoyed considerable success in meeting
these goals for a variety of applications, including multi-
material compressible hydrodynamics, accelerator
modeling, and Monte Carlo transport.

POOMA 2.x is the next generation of POOMA software,
designed to take advantage of advances in C++ compiler
technology and multi-threaded operation. As a result, it is
more flexible, extensible, and efficient than POOMA r1.

The Array Abstraction

The POOMA multidimensional Array concept is loosely based
on the FORTRAN 90 built-in array facility, but differs in a
few significant ways. First, FORTRAN arrays support
domains consisting of the tensor product of N one-
dimensional discrete index sequences, each having unit
stride, and ranges described by various sizes of integers,
floating point numbers, and complex numbers. POOMA
extends the array concept to additionally support bounded,
continuous (floating point) N-dimensional domains and
arbitrary ranges described by user-defined types. Second,
unlike FORTRAN, array indexing in POOMA is polymorphic;
that is, the indexing operation X(i1,i2) can perform the
mapping from domain to range in a variety of ways, depending
on the particular type of array that is being indexed.

Built-in FORTRAN arrays are dense and the elements are
arranged according to column-major conventions.
However, as Figure 1 shows, FORTRAN-style "Brick" storage
is not the only format of interest to scientific programmers.
For compatibility with C, one might use an array featuring
row-major storage. To save memory or operations, it is
advantageous to use an array with a data structure that can
automatically compress itself to a single value if all the
element values are the same. To exploit parallelism, it is
convenient for an array's storage to be broken up into
patches, which can be processed
independently by different CPUs in
a shared-memory multiprocessor.
In a cluster environment, these
patches can reside in different
memory spaces. Finally, one can
imagine an array with no data at
all. For example, the values can be
computed from an expression
involving other arrays or computed
analytically from the indices.

The POOMA Array class is
templated for flexibility and
extensibility:

template <int Dim, class T = double, class EngineTag = Brick>
class Array;

The template parameters Dim, T, and EngineTag determine
the precise type of the Array. Dim represents the dimension
of the Array's domain. T gives the type of Array elements,
thereby defining the output range of the Array. EngineTag
specifies the types of the indices and the manner of
indexing. These template parameters allow for arbitrary
domain, arbitrary range, and polymorphic indexing.

In addition to the intrinsic types like double and int,
POOMA supplies fixed-size Vector, Tensor, and Matrix
classes for use as the T parameter of Arrays. POOMA also
supplies over 20 "Engines" capable of doing indexing in
different ways. These can be plugged into an Array by
simply changing the EngineTag template parameter.

When used by itself, an Array object A refers to all of the
values in its domain. Elementwise mathematical operations
or functions can be applied to an Array using straight-
forward notation, like A + B or sin(A).

POOMA 2.x is the
next generation of
POOMA software,
designed to take
advantage of
advances in C++
compiler
technology and
multi-threaded
operation.

Expressions involving Array objects are themselves Arrays.
The operation A(d), where d is a Domain object that
describes a subset of A's domain, creates a view of A that
refers to that subset of points. Like an Array expression, a
view is also an Array. Changes to a view of A modify the
original Array A. If the domain d represents a single point in
the domain, this indexing operation returns a single value
from the range. Equivalently, it is possible to index an
N-dimensional array by specifying N indices. Reduction
operations, which work in parallel, are supported as well as
"stencil objects" that are used to create high-performance
finite-difference operators.

The Field Abstraction

The POOMA Field abstraction maps points in a coordinate-
space domain to values. It contains a representation of the
spatial domain and can specify what happens at the
boundaries of that domain. The Field class template is written

template<class Geometry, class T, class EngineTag>
class Field;

The T and EngineTag parameters are the same as in Array.
The Geometry parameter is new and it represents the
coordinate-space domain. POOMA currently provides
classes that represent only discrete geometries—specifically,
sets of points defined on a variety of centering positions
relative to logically rectilinear meshes. POOMA also
currently supports cartesian and cylindrical coordinates in
multiple dimensions.

This design of Field is very general. It admits continuous as
well as discrete domains given appropriately defined classes
for the Geometry and EngineTag parameters. By making no
assumptions about underlying meshes or discretization
schemes, it allows the possibility of implementing almost
any kind of field-based numerical scheme.

POOMA has a general scheme for defining boundary
conditions and automatically applying them when needed.
A subset of a Field's domain is defined as a "boundary"
whose values are to be computed based on the values of
some other observed subset. Whenever the boundary values
are read, POOMA checks whether the observed values have
changed since the last boundary condition application. If
so, it applies the boundary conditions again. The POOMA
boundary condition implementation supports boundary
conditions that do not require an observed set along with
non-automatic boundary conditions embedded in user-
defined operators. It is also possible to define internal
boundary conditions.

POOMA currently supplies several canned external
boundary conditions, implemented using guard (ghost)
layers of Field elements for discrete Fields. These include
typical reflecting, constant, periodic, and linear-

Brick: FORTRAN-style column-major storage.

C-style Brick: row-major storage.

Compressible Brick: a Brick that can compress to a single
value to save storage and operations.

Sparse: store non-zero elements only.

Multipatch: parts reside in different memory spaces.

Figure 1. Some indexing
examples of interest to
scientific programmers.

extrapolation boundary conditions. It is straightforward for
the user to add boundary conditions using a high-level data-
parallel application programming interface, including
spatially-dependent and time-dependent boundary conditions.

Like Arrays, POOMA Fields support elementwise operations
and functions, views, indexing, reduction operations, and
some high-level finite-difference-based differential operators
for divergence, gradient, and averaging. The example code
shown in Figure 2 illustrates some of the specific Geometry
and other Field-related classes and mechanisms provided
by POOMA.

The Particles Abstraction

Particle simulation techniques are used in many different
sorts of scientific applications, including Monte Carlo
sampling, particle-in-cell simulation, and molecular
dynamics. POOMA supports the wide variety of particle
simulations with a set of classes that provide storage for
particle data, strategies for distributing that data, and the ability
for particle data to be filtered or to interact with field data.

The Particles class in POOMA is a container of arrays of
particle data, where each array stores the values of one
particle characteristic for all particles. These arrays are
represented by the DynamicArray class:

template <class T, class EngineTag>
class DynamicArray : public Array<1,T,EngineTag>

A DynamicArray is a 1D array that can create or destroy
elements on the fly. Each DynamicArray in a Particles object
can represent a particle attribute using a different type T.
Besides storing the particles attributes, Particles also
provides the interface for creating and destroying particles,
enforcing a data layout strategy, and applying boundary
conditions, or "filters," to the particle attributes. POOMA
has a variety of boundary condition types, such as periodic,
reflecting, and absorbing, that modify a particle when its
value for some attribute exceeds a prescribed range.

The Particles class is declared as

template <class PTraits> class Particles;

where PTraits is a "traits" class defining certain
characteristics of particles. By convention, the PTraits
template argument must provide C++ typedefs for the
EngineTag of all the DynamicArrays contained by the
Particles class and for the type of layout strategy to be
employed.

POOMA provides several canned PTraits-type classes that
provide these typedefs, but the user is free to create new
classes that may contain additional traits information.

The layout strategy controls decomposition of the particle
DynamicArrays into separate patches. POOMA currently
offers two particle layout strategies: UniformLayout, which
divides the particle data into evenly sized patches, and
SpatialLayout, which decomposes the data such that
particles with positions inside a given patch of a POOMA
Field are grouped together. This second strategy is most
useful for cases having particle-particle or particle-field
interactions.

The intent of the Particles class is to provide the user with a
simple interface to their own customized Particles class. The
user derives a new class from Particles that contains the
desired particle attributes as member data. The user's
subclass will inherit the public interface of the Particles
class, which is needed in order for POOMA to manipulate
the attributes. For example, the user can define a class
called Airplanes that contains attributes for each airplane's
current coordinates, velocity, and remaining fuel as shown
in Figure 3.

To simplify interpolation between particle positions and
Field elements, POOMA provides global gather/scatter
functions and a variety of interpolation stencils. Each gather
or scatter call takes a particle attribute (or possibly a scalar
value), a Field, and a position attribute, and automatically
performs the interpolation in a data-parallel fashion.

For instance, if we wanted to scatter the number density of
our airplanes into a Field called "pdens," we would say

scatterValue(1,pdens,p.coordinates(),NGP());

Here we scatter a value of "1" for each airplane into the
Field element of "pdens" nearest to each airplane's
coordinates. We are using the nearest-grid-point
interpolation scheme, as indicated by the temporary object
of type NGP that is passed to the scattering function.

POOMA 2.2 is compatible with virtually all UNIX platforms
and runs with Windows 95/98/NT and MacOS 8.x.

const int Dim = 2; // Dimensionality

// Mesh size; 129 vertices per dimension:
Interval<Dim> vertDomain;
for (int d = 0; d < Dim; d++) vertDomain[d] = Interval<1>(129);

// Uniform, logically-rectilinear mesh; Cartesian coordinates:
typedef UniformRectilinearMesh<Dim, Cartesian<Dim> > Mesh_t;
Vector<Dim> origin(0.0), spacings(0.2);
Mesh_t mesh(vertDomain, origin, spacings);

// Geometry object for cell-centering with respect to mesh,
// one guard layer:
typedef DiscreteGeometry<Cell, Mesh_t > Geometry_t;
GuardLayers<Dim> gl(1);
Geometry_t geom(mesh, gl);

// Parallel layout; 8 patches per dimension:
Loc<Dim> patches(8);
GridLayout<Dim> layout(mesh.physicalCellDomain, patches, gl, gl);

// Create two scalar & one Vector Field (all using multi-patch
// engines with compressible bricks as the patches):
typedef MultiPatch<GridTag, CompressibleBrick> MP_t;
Field<Geometry_t, double, MP_t> s1(geom, layout), s2(geom, layout);
Field<Geometry_t, Vector<Dim>, MP_t> v(geom, layout);

s2 = s2.x()*s2.x(); // Assign s2(x) = x**2

// Assign u1 from s2 and divergence of v:
s1 = s2 + div<Cell>(v);

template <class PTraits>
class Airplanes : public Particles<PTraits> {

public:
// typedefs
typedef typename PTraits::ParticleLayout_t Layout_t;
typedef typename PTraits::AttributeEngineTag_t EngineTag_t;
// constructor/destructor
Airplanes(Layout_t& layout) : Particles<PTraits>(layout) {
// register each particle attribute with Particles
addAttribute(Coordinates_m);
addAttribute(Velocity_m);
addAttribute(Fuel_m);

}
~Airplanes() { }
// accessors
DynamicArray<Vector<3,double>,EngineTag_t>
coordinates() { return Coordinates_m; }
DynamicArray<Vector<3,double>,EngineTag_t>
velocity() { return Velocity_m; }
DynamicArray<double,EngineTag_t>
fuel() { return Fuel_m; }

private:
// data members
DynamicArray<Vector<3,double>,EngineTag_t> Coordinates_m;
DynamicArray<Vector<3,double>,EngineTag_t> Velocity_m;
DynamicArray<double,EngineTag_t> Fuel_m;

};

Figure 2. Illustration of some POOMA 2.1
Field capabilities. Shows use of
DiscreteGeometry<Mesh,CoordinateSystem>
for the Field class's Geometry parameter,
Vector for the T parameter, and MultiPatch for
the EngineTag parameter.Also shows use of
the high-level divergence operator
div<Cell>(f), which returns a Field having Cell
centering with respect to the same mesh as
the input field f. This inlines with the rest of
the expression on the right-hand side of the
assignment, via the expression-template
system.All of this code is implicitly parallel.
It is also dimensionality-independent: the
same source is correct for 3D simply by
changing the value of Dim from 2 to 3.

Figure 3. Illustration of the derivation of a
sample Airplanes class from the Particles
base class.

More information about POOMA…
contact: Scott Haney

e-mail: swhaney@lanl.gov
web: www.acl.lanl.gov/pooma/

Get POOMA and other
Advanced Computing Laboratory Software…

web: www.acl.lanl.gov/software/
cd: 1999 Advanced Computing Laboratory Software

This work supported by the US Department of Energy.

LALP-99-202 November 1999
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by
the University of California for the United States Department of Energy under contract W-7405-ENG-
36. All company names, logos, and products mentioned herein are trademarks of their respective
companies. Reference to any specific company or product is not to be construed as an endorsement
of said company or product by The Regents of the University of California, the United States
Government, the U.S. Department of Energy, nor any of their employees.

Los
N A T I O N A L L A B O R A T O R Y

Alamos

More information about POOMA…
contact: Scott Haney

e-mail: swhaney@lanl.gov
web: www.acl.lanl.gov/pooma/

Get POOMA and other
Advanced Computing Laboratory Software…

web: www.acl.lanl.gov/software/
cd: 1999 Advanced Computing Laboratory Software

This work supported by the US Department of Energy.

